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Background: Ankylosing spondylitis (AS) is a type of arthritis which can cause inflammation in the vertebrae and joints 
between the spine and pelvis. However, our understanding of the exact genetic mechanisms of AS is still far from being clear.
Objective: To study and find the mechanisms and possible biomarkers related to AS by surveying inter-gene correlations of 
networks. 
Materials and Methods: A weighted gene co-expression network was constructed among genes identified by microarray 
analysis, gene co-expression network analysis, and network clustering. Then receiver operating characteristic (ROC) curves 
were conducted to identify a significant module with the genes implicated in the AS pathogenesis. Real-time PCR was 
performed to validate the results of microarray analysis. 
Results:  In the significant module obtained from the network analysis there were eight AS related genes (LSM3, MRPS11, 
NSMCE2, PSMA4, UBL5, RPL17, MRPL22 and RPS17) which have been reported in previous studies as hub genes. 
Further, in this module, eight significant enriched pathways were found with adjusted p-values < 0.001 consisting of 
oxidative phosphorylation, ribosome, nonalcoholic fatty liver disease, Alzheimer's, Huntington's, and Parkinson's diseases, 
spliceosome, and cardiac muscle contraction pathways which have been linked to AS. Furthermore, we identified nine AS 
related genes (UQCRB, UQCRH, UQCRHL, UQCRQ, COX7B, COX5B, COX6C, COX6A1 and COX7C) in these pathways 
which can play essential roles in controlling mitochondrial activity and pathogenesis of autoimmune diseases. Real-time PCR 
results showed that three genes including UQCRH, MRPS11, and NSMCE2 in AS patients were significantly differentially 
expressed compared with normal controls. 
Conclusions: The results of the present study may contribute to understanding of AS molecular pathogenesis, thereby aiding 
the early prognosis, diagnosis, and effective therapies of the disease.
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1. Background 
Ankylosing spondylitis (AS), a type of persistent 
inflammatory arthritis, is a complex genetic disease which 
mainly affects the sacroiliac joints (SI joints) and axial 
skeleton. It can cause dramatic resorption and formation 
of bone, which eventually results in the occurrence of 
ankylosis (1). Until now, several factors including genetic 
susceptibility loci such as human leukocyte antigen 

HLA-B27 (2) and endoplasmic reticulum aminopeptidase 
1 (ERAP1) (3), as well as infections and environmental 
factors  have been proposed which are involved in the onset 
and development of the AS (4). However, the pathogenesis 
mechanism, progression, and diagnosis of AS have not 
been well identified (5). Therefore, exploration and 
finding the genes that may have an important role in the 
AS pathogenesis would be a necessity.
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Genome-wide association studies (GWAS) unveiled 
the involvement of numerous susceptible genes in 
the AS pathogenesis (6). On the other hand, genome-
wide transcriptome analysis has become the popular 
method to understand the pathogenesis mechanism of 
a disease, molecular classification, and identification 
of biomarkers. Recently network-based approaches 
have also been recommended to identify genetic 
determinants of human diseases.
While the description of differentially expressed 
genes (DEGs) can offer clues for ensuing functional 
analysis, finding patterns in the gene expression data 
may disclose the overlooked perspectives of one-
dimensional differential gene expression method. 
Various studies show that gene interaction networks can 
help to identify new biomarkers of complex diseases 
(7). The co-expression network is the most common 
gene network that is based on the correlations between 
gene expression profiles. In this network, enrichment for 
gene ontology (GO) or multivariate statistical methods 
are utilized to group highly co-expressed (correlated) 
genes into co-expression modules (gene sets).

2. Objective 
The main objective of this research is to find the possible 
biomarkers of AS disease by surveying inter-gene 
correlations of networks and identifying the AS related 
mechanisms. For this purpose, a co-expression network 
was constructed and various modules were identified. 
The module with the highest area under curve (AUC) 
values in ROC curve was selected for further analysis. 
Moreover, Real time-PCR analysis was conducted 
to validate the hub genes which were found from the 
network analysis.

3. Materials and Methods

3.1. Microarray Dataset and Preprocessing
The microarray dataset was downloaded from the Gene 
Expression Omnibus (GEO) database (GEO accession 
GSE25101) (8). Sample sequencing was done with the 
Illumina platform (GPL6947-Illumina HumanHT-12 
V3.0 expression beadchip). The dataset comprises the 
gene expression profiles of 16 AS patients and 16 age, 
sex-matched normal subjects (8). Lumi package (9) was 
applied to quantile normalization. The probes which 
annotated to several genes were excluded and among 
the probes which annotated to a gene, the one with the 
max variance expression was chosen. After applying the 
preprocessing steps, we gained an expression matrix, 
where rows represent genes and columns represent 
samples.

3.2. Construction of Gene Co-Expression Network 
In this research, weighted gene co-expression analysis 
(WGCNA) was applied to predict significant genes in the 
development of AS (10). By such analysis, the strongly 
correlated gene modules and the gene membership in 
a module are identified. Firstly, hierarchical clustering 
was used to detect sample outlier (11). Then, Pearson’s 
correlation cor(i, j)|, between every pair of genes was 
calculated. This correlation matrix was transformed 
into a matrix of connection strengths (i.e. an adjacency 
matrix) by a power function [connection strength = (0.5 
+ 0.5*correlation) β], which resulted in a weighted co-
expression network. The various power β value was 
used to estimate the scale-free topology criterion, as 
described in the original publication(12).
 Signed and unsigned networks are two of the more 
frequently used co-expression networks which are 
constructed based on the correlation coefficient values 
and absolute values, respectively. In this study, the 
signed network was constructed (13). Subsequently, the 
topological overlap measure (TOM)(14) was employed 
to combine the adjacency of each two genes and also 
their connection strengths with other neighbor genes. 
The genes inside a module can be summarized with the 
module eigengene (ME), which is defined as the first 
principal component of the expression profiles (15). 
Next, the dissimilarity matrix 1-TOM was calculated 
as the input for hierarchical clustering by flashClust 
package. Afterward, the modules were identified by 
the cutreeDynamic function (16) with parameters 
deepSplit = 2 and minClusterSize = 30, and default 
values were used for other parameters. Flow diagram 
of the underlying protocol is presented in Figure 1.
In order to select the module with the highest correlation 
with AS disease, the support vector machine (SVM) 
classification procedure was utilized. SVM classifier 
explores the optimal hyperplane that can fulfill the 
classification requirement. The distance between two 
support vectors is considered as the criteria for the 
optimal margin evaluation (17). The samples were 
classified based on the genes of each module and class 
label (normal or patient). The SVM was operated for 
each module, then the results were evaluated using the 
receiver operating characteristic (ROC) curves. The 
module with the highest AUC values was selected for 
further analysis. To find genes with higher membership 
value in the selected module, the module membership 
value was calculated. The module membership (MM): 
MM(i)=cor(xi, ME) determines the gene significance 
within the module, in which higher absolute value 
of MM(i) specifies the more important gene i in the 
module (10). The genes in the candidate module were 
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chosen when their membership to the candidate module 
was more than 0.8 and their adjusted p-values were 
significant (adjusted p-values < 0.01). The module co-
expression network was visualized in Cytoscape_v3.6.0 
(18). 

3.3. Functional Enrichment Analysis
The Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) was used to carry out 
functional enrichment analysis (19). Pathways with 
adjusted p-values < 0.001 were selected as significant. 
The genes which enriched in the significant pathways 
were chosen for future studies.

3.4. Candidate Genes Validation Using Quantitative 
Real-Time Polymerase Chain Reaction 
Real-time PCR was performed to validate six 
representative genes which randomly selected from 
AS related genes in significant module. In the current 
study, 53 AS patients attending Shariati Hospital, 

Tehran, Iran were recruited along with 49 healthy 
controls. The healthy group had no clinical evidence 
or family history of any type of autoimmune disease. 
Healthy controls were matched to the patients in terms 
of gender and age. Diagnosis of AS was performed by a 
rheumatologist based on the modified New York criteria 
(20). Since neither two AS patients nor two controls 
were selected from the same family, the intrafamily 
correlation was excluded. All AS patients and healthy 
subjects declared their agreement to enter the study 
by signing the consent form. This study was approved 
by The Human Research Ethics Committee, Tehran 
University of Medical Sciences. Disease severity 
and functional disabilities of patients were assessed 
through Bath Ankylosing Spondylitis Disease Activity 
Index (BASDAI), (21) Bath Ankylosing Spondylitis 
Functional Index (BASFI) (22), and Bath Ankylosing 
Spondylitis Metrology Index (BASMI) (23). HLA-B27 
screening for each AS patient was performed. Baseline 
characteristics and clinical manifestations of AS patients 

Figure 1. Flow diagram of Construction of Gene Co-expression Network.
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are present in Table S1 (Supplementary Materials).
The experiment was performed by obtaining 10 mL of 
peripheral blood from all the subjects. Then, peripheral 
blood mononuclear cells (PBMCs) were isolated using 
Ficoll-Hypaque (inno-Train Diagnostik GmbH, Taunus, 
Germany) density gradient centrifugation approach. 
High Pure RNA Isolation Kit (Roche, Mannheim, 
Germany) was used to extract total cellular RNA, 
according to the manufacturer’s instruction. Next, 
DNA and RNA contents of samples were quantified 
spectrophotometrically by recording absorbance at 
260 and 280 nm (NanoDrop 2000c Spectrophotometer, 
Thermo Fisher Scientific, Wilmington, DE, USA).
cDNA was synthesized from 1 μg of total RNA by 
Transcriptor First Strand cDNA Synthesis Kit (Roche, 
Germany) according to the manufacturer’s instructions. 
StepOnePlus Real-time PCR system (Applied 
Biosystems, Foster City, CA, USA) and SYBR Green 
(Ampliqon, Odense, Denmark) master mix were 
employed. Primer sequences are listed in Table S2 
(Supplementary Materials). The relative amount of 
target mRNA in each test sample was calculated and 
normalized to the corresponding β2-microglobulin 
(β2M) mRNA transcript level as a housekeeping gene. 
Comparative CT method was used to evaluate the 
quantitative mRNA expression, as formerly described 
by Schmittgen and Livak (24). Then, the relative 
expression for each sample was calculated according 
to the following equation: relative mRNA expression = 
(2− ΔCt) ×103.

3.5. Statistical Analysis
The data were analyzed using SPSS software version 
22 (SPSS, Chicago, IL, USA). The normality of data 
distribution was evaluated using the Kolmogorov–
Smirnov test. In the cases of normally distributed data, 
the independent sample t-test was used to compare 
differences between two groups but if data were not 
normal, the Man-Whitney test was used. The GraphPad 
Prism version 6 (GraphPad Software, La Jolla, CA 
USA, www.graphpad.com) was used to draw the 
graphs. The correlations between the expression of 
genes and clinicopathological characteristics were 
analyzed employing Spearman’s Rank-Order. Data 
were expressed as mean ± standard deviation (SD) with 
statistical significance set (P = 0.05).

4. Results

4.1. Data Preprocessing and Sample Selection
Gene expression dataset GSE25101 was firstly quantile 
normalized and log 2 transformed. The samples 

were assessed in terms of missing entries. Finally, 
11484 annotated genes were used to construct the co-
expression network. No sample was detected as the 
outlier. 

4.2. Construction of Weighted Gene Co-Expression 
Network 
To specify the required criterion for construction of 
WGCN, the scale-free topology fit index was calculated 
for different soft-thresholding power. It reached above 
0.8 for a power of 8 while a relatively high mean 
connectivity remained. Next, the signed co-expression 
network was constructed based on the correlation 
between gene expression levels. After clustering the co-
correlated genes, 25 modules with corresponding color 
assignments were identified. Each color represents a 
module in the constructed gene co-expression network 
by WGCNA (Fig. 2). 

4.3. Module-Trait Relationships
To find the most AS associated module, accuracy 
and ROC diagram for SVM classification has been 
calculated and depicted in Figure 3. Among these 25 
modules, green-yellow and black modules demonstrated 
statistically significant relation to the traits (AUC 
(green-yellow) = 0.89, AUC (black) = 0.67). The 
number of genes in green-yellow and black modules 
was 350 and 421, respectively. Since the AUC of 
black module was calculated as 0.67, the green-yellow 
module was selected for further enrichment analysis. 
The genes co-expression network in module green-
yellow is visualized in Figure S1 (Supplementary 
Materials). It consists of 350 nodes and 756 edges. 

4.4. Modules Preservation Across Independent Dataset
A second dataset (i.e., the samples of the GSE73754 
dataset) was assessed to examine whether the modules 
resulting from the first dataset (GSE25101) can be 
replicated. To this purpose, modulePreservation 
function in the WGCNA package was applied (10). 
Generally, the modules with Zsummary <2 considered 
as no preservation, 2 < Zsummary < 10 implies 
moderate preservation, while a Z-statistic > 10 implies 
strong module preservation. Altogether, a Zsummary 
≥ 2 indicates that the modules are preserved (or 
reproducible) (25). The green-yellow module showed 
moderate preservation (2 ≤ Z-statistic ≤ 10) between 
the two datasets (Fig. S2, Supplementary Materials). 

4.5. Pathway Enrichment Analysis 
Pathway enrichment analysis of green-yellow module 
was performed using the DAVID online tools. It showed 
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Figure 2. Dendrogram plot displaying the co-expression modules determined by the WGCNA, labeled by color. Each color represents a 
certain gene module. 25 modules with corresponding color are illustrated.

Figure 3. Module-Trait Relationships ROC (MTR_ROC). Among 25 modules, green-yellow and black modules demonstrated statistically 
significant related to the traits (AUC (green-yellow) = 0.89, AUC (black) = 0.67). 
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the enrichment of significant genes in eight remarkable 
pathways under the condition of adjusted p-values 
< 0.001 (Table 1). These pathways were Ribosome, 
Oxidative phosphorylation, Parkinson’s disease, 
nonalcoholic fatty liver disease, Alzheimer’s disease, 
Huntington’s disease, spliceosome, and cardiac muscle 
contraction pathways. Nine genes were involved in 
most of the mentioned pathways, which may have 
potential as biomarkers and treatment purposes.

4.6. Demographic Data
The mean age of patient and healthy groups were 40 ± 
10.9 and 38 ± 9.9 years, respectively. Any significant 
difference was found between the ages of two groups. 
Moreover, the patient group composed of 13 females 
and 40 males whereas the healthy group included 11 
females and 38 males.

4. 7. Quantitative Real-time PCR Validation
The expression levels of six genes (COX7C, UQCRH, 
LSM3, PSMA4, NSMCE2, and MRPS11) in the green-
yellow module were evaluated to validate the results 
of the network-based analysis. These genes were 
downregulated in the AS patients rather than normal 
subjects in the microarray dataset. The expression levels 
of MRPS11 and NSMCE2 were downregulated (both 
0.8-fold, with P = 0.044 and P = 0.029, respectively) 
in the patient validation samples, however, the UQCRH 
gene was upregulated (1.2-fold, P = 0.007; Fig. 4). The 
difference between the expression levels of COX7C, 
LSM3, and PSMA4 in normal and AS patients was 
not significant. Further, the relative UQCRH gene 
expression level was significantly higher in HLA-B27 
positive than in the HLA-B27 negative patients’ group 
(1.3-fold, P = 0.041; Fig. S3, Supplementary Materials).

Table 1. Significant pathways with adjusted p-value < 0.001. 
 

Terms Count adjusted   
p-value Genes 

Ribosome 36 7.4E-27 
 

RPL4, RPL31, MRPS11, RPL11, MRPL36, MRPL15, RPL9, 
MRPL35, RPL6, MRPL32, RPL7, MRPL11, MRPL20, MRPL3, 
RPS17, MRPL1, RPL36AL, RPL35, RPL17, RPL39, RPL41, RPS7, 
RPL23, MRPL27, MRPS21, RPL35A, RPS3A, MRPL22, MRPL30, 
RPS27, RPL37A, FAU, RPL26, RPS21, RPL26L1, RPS24 

Oxidative phosphorylation 
 

29 8.3E-19 
 

COX7B, NDUFB8, NDUFB7, NDUFB10, UQCRB, NDUFA11, 
NDUFA12, COX17, NDUFB3, NDUFB2, ATP5C1, ATP5J, 
COX7A2, ATP5I, ATP5H, COX6A1, ATP5O, COX5B, COX7C, 
UQCRH, NDUFV2, NDUFA4, NDUFA1, COX6C, UQCRHL, 
ATP5J2, UQCRQ, NDUFS5, NDUFS4 

Parkinson's disease 26 5.18E-15 
 

COX7B, NDUFB8, NDUFB7, NDUFB10, UQCRB, NDUFA11, 
NDUFA12, NDUFB3, NDUFB2, ATP5C1, ATP5J,COX7A2, 
ATP5H, COX6A1, ATP5O, COX5B, COX7C, UQCRH, NDUFV2, 
NDUFA4, NDUFA1, COX6C, UQCRHL, UQCRQ, NDUFS5, 
NDUFS4 

Huntington's disease 28 1.1E-13 
 

COX7B, NDUFB8, NDUFB7, NDUFA11, NDUFB10, UQCRB, 
NDUFA12, NDUFB3, NDUFB2, ATP5C1, CLTA, ATP5J, 
COX7A2, ATP5H, COX5B, COX6A1, ATP5O, COX7C, UQCRH, 
NDUFV2, NDUFA4, NDUFA1, COX6C, UQCRHL, UQCRQ, 
NDUFS5, NDUFS4, TAF4B 

Alzheimer's disease 26 2.8E-13 
 

COX7B, NDUFB8, NDUFB7, NDUFB10, UQCRB, NDUFA11, 
NDUFA12, NDUFB3, NDUFB2, ATP5C1, ATP5J, COX7A2, 
ATP5H, COX6A1, ATP5O, COX5B, COX7C, UQCRH, NDUFV2, 
NDUFA4, NDUFA1, COX6C, UQCRHL, UQCRQ, NDUFS5, 
NDUFS4 

Non-alcoholic fatty liver 
disease (NAFLD) 

22 1.5E-10 
 

COX7B, NDUFB8, NDUFB7, NDUFB10, UQCRB, NDUFA11, 
NDUFA4, NDUFA12, NDUFB3, NDUFB2, NDUFA1, COX7A2, 
COX6A1, COX6C, COX5B, COX7C, UQCRH, UQCRHL, UQCRQ, 
NDUFS5, NDUFS4, NDUFV2 

Spliceosome 13 5.4 E-4 
 

SF3B5, SF3B6, BUD31, LSM5, LSM3, PQBP1, LSM7, PRPF18, 
SNRPD1, TRA2B, SNRPG, SNRNP27, SNRPF 

Cardiac muscle contraction 10 5.2E-04 
 

COX7B, UQCRB, UQCRQ, COX7A2, COX6C, COX6A1, COX5B, 
COX7C, UQCRHL, UQCRH 

 
  

Table 1. Significant pathways with adjusted p-value < 0.001.
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4.8. Correlations between Gene Expression and 
Clinical Indices
The correlations between the expression of UQCRH, 
NSMCE2, and MRPS11 genes and clinical indices of 
AS patients are demonstrated in Table 2. Although 
the significant correlation was found between the 
expression of MRPS11 gene and BASDAI scores (r = 
0.287, P = 0.041) there were no significant correlations 

between the expression of three significant genes and 
clinical manifestations of the patients. 

5. Discussion
In the present study, WGCNA was employed to identify 
the gene signatures involved in the pathogenesis of AS 
disease. The co-expression analysis revealed the green-
yellow module as the most related module to AS. The 

 
 
Table 2. Correlation between differentially expressed genes validated by Real-time PCR and AS clinical indices. 
 

Gene Clinical Index Correlation Coefficient P 
UQCRH Gene Expression BASDAI 0.21 0.14 

BASMI 0.17 0.23 
BASFI 0.16 0.25 
ASQoL                        0.26 0.06 
ESR 0.12 0.42 

MRPS11 Gene Expression BASDAI 0.29 0.04 
BASMI 0.01 0.96 
BASFI 0.13 0.34 
ASQoL                        0.24 0.08 
ESR -0.02 0.89 

NSMCE2 Gene Expression BASDAI 0.18 0.19 
BASMI -0.8 0.59 
BASFI -0.13 0.92 
ASQoL                        0.08 0.55 
ESR -0.11 0.46 

* Bold item demonstrates statistically significant value. 
 

Figure 4. Relative expression levels of three selected genes (MRPS11, NSMCE2 and UQCRH) according to the network and sub-networks 
findings. The expression of genes in AS patients (black bars) compared to normal controls (white bars) are shown (*P <0.05, ** P <0.01, 
*** P < 0. 0.001). MRPS11 and NSMCE2 were downregulated (both 0.8-fold, with P = 0.044 and P = 0.029, respectively) and UQCRH 
gene was upregulated (1.2-fold, P = 0.007).

Table 2. Correlation between differentially expressed genes validated by Real-time PCR and AS clinical indices.
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remarkable genes in this module were determined 
through pathway analysis since the common genes in 
statistically significant pathways were considered as the 
AS biomarkers. 
The presence of genes such as LSM3 homolog, U6 
small nuclear RNA and mRNA degradation associated 
(LSM3), Mitochondrial ribosomal protein S11 
(MRPS11), E3 SUMO-protein ligase NSE2 (NSMCE2), 
Proteasome subunit, alpha type 4 (PSMA4), Ubiquitin-
like 5 (UBL5), ribosomal protein L17 (RPL17), 
Mitochondrial ribosomal protein L22 (MRPL22), 
and ribosomal protein S17 (RPS17) in the significant 
module (green-yellow) that have been reported in 
previous AS studies, supported the validity of module.
LSM3 gene is involved in pre-mRNA splicing. Herein, 
we identified that LSM3 gene was downregulated in 
the AS cases. Perturbations in processing and splicing 
of pre-mRNAs might affect the expression quality and 
quantity of other genes which might be involved in the 
AS pathogenesis. Also, the expression of spliceosome 
members in the various leukocyte subsets is associated 
with the inflammatory, oxidative, and proatherogenic 
profile of AS patients (26). 
MRPS11 gene was downregulated in the AS subjects 
with the largest effect size. NSMCE2 gene is one of the 
tops downregulated genes in AS patients as well. These 
findings are the results of the analysis that have led to 
the identification of genes with unknown transcriptional 
changes in AS(27). PSMA4 gene is the 20S proteasome 
core which is required for proteasome function (28). 
The proteasome complex is a proteolytic system which 
has key role in the function of the adaptive immune 
system through the major histocompatibility complex 
(MHC) class I (29). 
Previous studies revealed the upregulation of proteins 
in the ubiquitin-proteasome pathway for AS patients. 
Ubiquitin-like 5 gene encodes UBL5 protein, which 
is similar to ubiquitin. UBL5 may not directly bind to 
target proteins but impresses the ubiquitin-proteasome 
pathway (UPP) through conjugation with the protein by 
an isopeptide bond.
The ubiquitin-proteasome pathway of protein 
degradation involves the conjugation of ubiquitin 
molecules to the targeted protein that is recognized by 
proteasome subunits. It is an ATP-dependent process 
with the involvement of three enzymes (30). The 
ribosomal protein and proteasome domains may be 
disturbed through the abnormal expression of DEGs. 
This event leads to the incidence of the AS disease. 
Wright et al. demonstrated a significant differential 
UPP protein expression in the monocytes from patients 
with AS and emphasized the important role of UPP in 

AS (31). Moreover, ribosomal proteins such as RPL17, 
MRPL22 (32), and RPS17 (33) might have a close 
correlation with AS. 
The pathway analysis demonstrated the signaling 
pathways like oxidative phosphorylation (34-36), 
ribosome (31) and Parkinson’s (37), Alzheimer’s (38), 
Huntington’s (39) diseases, as well as spliceosome 
(40), cardiac muscle contraction (41), and nonalcoholic 
fatty liver disease (NAFLD) (42) that all of them are 
associated with AS. Moreover, according to pathway 
enrichment, nine genes were involved in various 
pathways. Ubiquinol-cytochrome c reductase binding 
protein (UQCRB), ubiquinol-cytochrome c reductase 
hinge protein (UQCRH), ubiquinol-cytochrome c 
reductase hinge protein-like (UQCRHL), ubiquinol-
cytochrome c reductase complex III subunit VII 
(UQCRQ), cytochrome c oxidase subunit 7B (COX7B), 
cytochrome c oxidase subunit 5B (COX5B), cytochrome 
c oxidase subunit 6C (COX6C), cytochrome c oxidase 
subunit 6A1 (COX6A1), and cytochrome c oxidase 
subunit 7C (COX7C) are implicated in six remarkable 
pathways and seems to have a higher significance 
versus other genes. UQCRB, UQCRH, UQCRHL, and 
UQCRQ encode proteins that are parts of the complex 
III or cytochrome b-c1 complex, and a component of 
the mitochondrial respiratory chain (https://www.ncbi.
nlm.nih.gov/protein). Furthermore, COX7B, COX5B, 
COX6C, COX6A1, and COX7C encode proteins that 
are the nuclear-coded polypeptide chains of cytochrome 
c oxidase (https://www.ncbi.nlm.nih.gov/protein). 
The association of cytochrome c and cytochrome 
bc1 complex (complex III, ubiquinol: cytochrome c 
oxidoreductase) with the autoimmune diseases through 
reactive oxygen species (ROS) production has been 
proposed. Cytochrome c can amplify ROS production in 
mitochondria (43). Moreover, cytochrome bc1 complex 
and complex I (NADH: ubiquinone oxidoreductase) are 
known as the major sources of superoxide anion radicals 
(44). The critical role of ROS in the pathophysiology 
of autoimmune diseases has been suggested. ROS 
can cause the “neo-antigen” generation by changing 
the structure of cellular antigens, which leads to 
increase the autoimmune response against the original 
antigen. ROS are also implicated in the activation of 
antigen-presenting cells, apoptosis, and amplification 
of diverse immunologic reactions (45) as well as in 
the pathophysiology of several autoimmune diseases 
including Parkinson’s, Huntington’s, Alzheimer’s 
diseases, and systemic lupus erythematosus (SLE) 
disease (46, 47). 
Moreover, we validated the expression of UQCRH, 
MRPS11, and NSMCE2 by Real-time PCR. Expression 
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of UQCRH gene was increased in our samples while 
it was downregulated in the co-expression network. 
The difference in samples can be regarded as a possible 
cause to justify such inconsistency. Moreover, several 
confounding factors, such as disease stage, sample 
formation, cell-specific frequently, and experimental 
factors that can severely influence the outcome of a 
transcriptome analysis could be the underlying reasons 
for such discrepancy (48).
The UQCRH gene encodes a hinge protein consisting 
of 91 amino acids that are distributed in the nucleus and 
mitochondria. It is also primarily involved in mitochondrial 
oxidative phosphorylation. As the main subunit of 
ubiquinol-cytochrome c reductase complex, UQCRH is 
responsible for electron transfer between cytochrome c 
and cytochrome c1 during oxidative phosphorylation. The 
abnormal high expression level of this gene can lead to 
cellular ROS production (49). In addition to upregulation 
of UQCRH in the AS patients compared with controls, it 
also overexpressed in the HLA-B27 positive AS subjects 
in comparison to HLA-B27 negative AS patients (1.3 
times; P = 0.041). These data indicate that UQCRH gene 
may intensify AS pathogenesis in HLA-B27 positive 
subjects, since HLA-B27 molecule was already reported 
to be involved in TNF production (50) and, hence an 
inflammation in AS.
MRPS11 is a component of the ribosomal small subunit 
that binds to 12S rRNA (51). All of the Mitochondrial 
Ribosomal Proteins (MRPs) are encoded by nuclear 
genes and involved in protein synthesis within the 
mitochondrion. The mitoribosomes of mammals are 55-
60S particles and consist of a small 28S and a large 39S 
subunits (52). Mutations or deficiencies of ribosome 
assembly proteins implicated in mitochondrial 
translation are potential candidates for mitochondrial 
diseases since the mitochondrial ribosome translates 
mRNAs for the 13 vital components of the oxidative 
phosphorylation system (53). Several studies have 
shown that mitochondrial dysfunction is evidence 
of neurodegenerative diseases, some autoimmune 
disorders, and cancers (54, 55). Analysis based on the 
Spearman’s rho test indicated a positive correlation 
between disease activity (measured by BASDAI) and 
MRPS11 gene expression. Some researchers have 
affirmed that the disease severity of AS might be 
related to the HLA-B27 status. Indeed, Freeston et al. 
reported that HLA-B27 positive patients with AS have 
significantly longer disease duration and present worse 
BASDAI, BASFI, and ankylosing spondylitis quality 
of life (ASQoL) compared with HLA-B27 negative 
AS (56). However, there is no study on the correlation 
between expression of MRPS11 gene and disease 

activity indices in the course of AS disease, and more 
studies are needed. 
NSMCE2 gene is a component of the structural 
maintenance of chromosomes (Smc) 5/6 complex, 
which is involved in DNA repair (57). To prevent DNA 
damage from compromising the genetic integrity of an 
organism, cells employ surveillance mechanisms to 
sense damaged DNA and to elicit concordant cellular 
responses such as DNA repair, cell cycle arrest, and 
apoptosis. Mutations of genes involved in the DNA 
damage response pathways can also lead to diseases 
such as cancer, immune deficiencies (58), and some 
connective tissue diseases such as rheumatoid arthritis. 
Furthermore, defects in DNA damage and DNA repair 
mechanisms may contribute to the AS process (59) 
as we detected differentially expression pattern of 
NSMCE2 in the AS subjects.

6. Conclusion
In conclusion, we successfully identified eight pathways 
in Ankylosing spondylitis based on co-expression 
network analysis. Moreover, we predicted 17 genes as 
potential biomarkers for AS and confirmed UQCRH, 
MRPS11, and NSMCE2 as the differently expressed 
genes in Ankylosing spondylitis patients using RT-PCR 
assay. These genes are proposed as the biomarkers for 
early detection and therapy for Ankylosing spondylitis.
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