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Background: As the most prevalent form of liver cancer, hepatocellular carcinoma (HCC) ranks the fifth highest cause 
of cancer-related death worldwide. Despite recent advancements in diagnostic and therapeutic techniques, the prognosis 
for HCC is still unknown.
Objectives: This study aimed to identify potential genes contributing to HCC pathogenicity. 
Materials and Methods: To this end, we examined the GSE39791 microarray dataset, which included 72 HCC samples 
and 72 normal samples.  An investigation of co-expression networks using WGCNA found a highly conserved blue 
module with 665 genes that were strongly linked to HCC.
Results: APOF, NAT2, LCAT, TTC36, IGFALS, ASPDH, and VIPR1 were the blue module’s top 7 hub genes. According 
to the results of hub gene enrichment, the most related issues in the biological process and KEGG were peroxisome 
organization and metabolic pathways, respectively. In addition, using the drug-target network, we discovered 19 FDA-
approved medication candidates for different reasons that might potentially be employed to treat HCC patients through the 
modulation of 3 hub genes of the co-expression network (LCAT, NAT2, and VIPR1). Our findings also demonstrated that 
the 3 scientifically validated miRNAs regulated the co-expression network by the VIPR1 hub gene. 
Conclusion: We found co-expressed gene modules and hub genes linked with HCC advancement, offering insights into 
the mechanisms underlying HCC progression as well as some potential HCC treatments. 
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1. Background
Hepatocellular carcinoma (HCC) is the fifth most 
common cancer and the second leading cause of cancer 
death worldwide (1). The disease is estimated to have 
a global annual incidence rate of 1,000,000 cases, with 
an approximately 4:1 male to female ratio (2). HCC 
is a complex disease; however, the most probable risk 
factors for its progression include cirrhosis, hepatitis 
virus infections, alcohol use, smoking, diabetes, age, 

and gender (3). Studies showed that several biomarkers 
could identify HCC, including AFP-L3 (4), Des-π-
carboxyprothrombin (5), Glypican-3 (6), Golgi Protein 
73, and Midkine (7). Among them, serum alpha-
fetoprotein (AFP) is used as the primary and common 
diagnostic test for HCC patients in the clinic. The 
AFP protein is used as a tumor marker associated with 
malignancies in early screening as well as pre- and 
post-treatment of HCC patients (8). For HCC diagnosis 
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and treatment, AFP is also advised along with standard 
imaging techniques such ultrasonography (US), 
magnetic resonance imaging (MRI), and computer 
scanning (CT) (9). However, AFP as a diagnostic 
biomarker lacks specificity and sensitivity in HCC and 
liver cirrhosis differentiation (10). 
Furthermore, it lacks the discriminatory capacity to 
detect damages caused by cirrhosis and chronic hepatitis 
triggered by hepatitis B virus (HBV) or hepatitis C 
virus (HCV) infection, as well as HCC and intrahepatic 
(11). Due to the lack of certain specific and sensitive 
biomarkers to confirm HCC patients, it was difficult to 
diagnose and treat HCC as early as possible; therefore, 
some patients will be missed from therapeutic and 
optimal prognosis (10). The limitations mentioned above 
highlight the necessity and urgency of finding other 
biomarkers to be used alone or incorporated with AFP in 
HCC diagnosis. Since HCC is a heterogeneous disease 
with progressive accumulation of gene alterations and 

complex multi-step processes. We need to discover 
the vast molecular tumor landscapes at several 
levels, including gene expression, transcriptome, and 
epigenetic alterations (9). The strategy that can bring 
us closer to this goal is the use of tumor and normal 
samples for analyzing high-throughput gene microarray 
from patients and healthy individuals, respectively. 

2. Objectives
We propose to utilize bioinformatics approaches in this 
research based on weighted gene co-expression network 
analysis (WGCNA) to identify the differentially 
expressed genes and microRNA (miRNAs) as well 
as drug-gene interaction between tumor and matched 
non-tumor surrounding tissues of HCC patients who 
underwent surgical resection as the treatment initiation 
for evaluation of late recurrences. The overall workflow 
of the present study is presented in Figure 1.

Figure 1. The flowchart of the study.

Sharifi H et al.

GEO dataset (GSE39791)

Row data source and preprocessing

Differential expression analysis

DEGs with
Adjust p-value<0.05,

|log2FC|≥1.5

Functional annotation of DEGs

Common hub-genes

Gene selection

Selected genes mRNA
expression and survival

analyses through

Selection of genes with highest
Gs & MM

Functional annotation of module

Module Preservation Analysis

High corelated module selection

Co-expression network analysis



14 Iran. J. Biotechnol. July 2022;20(3): e2968

3. Materials and Methods 

3.1.Microarray Data Study
The GSE39791 microarray dataset was obtained from 
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). This dataset was based on 
the Agilent GPL10558 platform (Illumina HumanHT-12 
V4.0 expression bead chip) and contained a total of 144 
samples, including 72 HCC samples and 72 normal 
liver tissues. The raw data were normalized, quantile-
normalized, and gene symbols were used instead of 
probe IDs. In all samples, gene symbols were filtered 
according to their variance; only genes with variances 
ranking in the top 4000 were chosen for additional 
studies.

3.2. Identification of Differentially Expressed Genes 
(DEGs)
DEG analysis was conducted using GEO2R (https://
www.ncbi.nlm.nih.gov/geo/geo2r/) and limma package 
of R (version 3.48.0) among HCC and normal liver 
samples. A gene was deemed a DEG if it matched the 
following criteria: Adjust p-value< 0.05, and |log2FC| ≥ 
1.5. The log2 (fold-change) is the log ratio of a gene’s 
expression values in two different conditions. The 
common genes between the two approaches (limma 
and GEO2R) were used for downstream analysis.

3.3. Construct Co-Expression Modules of HCC
The WGCNA package was used to create a co-
expression network based on gene expression data 
from patients and a control group (12). First, the “good 
Samples Genes” function in the WGCNA package 
was used to check for missing values, and hierarchical 
cluster analysis was used to detect outliers. Following 
the scale-free topological algorithm, when the β value 
was set to 10, the adjacency matrix met the scale-
free topology criteria. The topological overlap matrix 
(TOM) and dissimilarity TOM (dissTOM) were 
generated based on the adjacency matrix. Ultimately, 
modules were described as a group of strongly linked 
genes with a cut height of 0.1 and a minimum module 
size of 30 genes.

3.4. Construct Module-Trait Relationships of HCC
In order to determine modules that were connected 
with the examined clinical characteristic, the module 
eigengene (ME) was used as the first principal 
component of the expression matrix to summarize 

each module’s expression profile. To investigate the 
connection between particular genes and HCC, the 
gene significance (GS) values were used. Module 
membership (MM) was also identified as the 
relationship between the ME and the gene expression 
profile of each module. The modules’ most significant 
(central) parts were likewise directly connected with 
the trait if the GS and MM were significantly correlated 
(13). As a result, they may be utilized to build a network 
and pinpoint the genes that act as hubs. Genes with 
both GS and MM0.8 were chosen as hub-genes as the 
final stage if they were differentially expressed relative 
to control samples.

3.5. Module Preservation Analysis
To verify the reliability of the identified modules with 
significant correlation to HCC, we conducted the module 
preservation analysis by datasets such as GSE121248 
and GSE82177. The GSE121248 is a microarray 
dataset containing 107 chronic hepatitis B induced 
HCC and adjacent-normal tissues. On the other hand, 
GSE82177 contains 27 samples of human liver RNA-
seq data corresponding to un-infected non-malignant, 
HCV infected non-malignant, and HCV+ HCC tissue. 
The first 4000 genes with the highest coefficient of 
variation were utilized as an input to determine the 
extent of module preservation in each dataset. The 
extent of module preservation was quantified by Zsummary 
statistics, in which Zsummary<2 shows no preservation, 
2<Zsummary<10 indicates weak-moderate preservation, 
Zsummary>10 suggested strong evidence for preservation.

3.6.  Functional Enrichment Analysis of Significant Modules
Functional enrichment was investigated using 
the DAVID (Database for Annotation Visualization 
and Integrated Discovery) (https://david.ncifcrf.gov/
tools.jsp), GO (Gene Ontology) (http://geneontology.
org/), and KEGG (https://www.genome.jp/kegg/) 
databases. We picked enriched ontological words 
and pathways with a Benjamin-adjusted p-value 
threshold of 0.05. If there were more than five 
records, the top five were considered. GeneMANIA 
(https://genemania.org/) and Cytoscape v 3.0 
software created functional networks (14). The 
Venn diagram was created using the free “Venny” 
v 2.1 software (http://bioinfogp.cnb.csic.es/tools/
venny/).

Sharifi H et al.
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3.7. Validation of the Hub Genes
To validate differential expression hub genes among 
HCC and normal samples, the Gene Expression Profiling 
Interactive Analysis database (GEPIA; http://gepia.
cancer-pku.cn) was used. Moreover, the differences in 
the protein level of hub genes were examined between 
HCC and normal samples by immunohistochemistry 
(IHC), using the Human Protein Atlas database (HPA; 
https://www.proteinatlas.org/). Survival analyses of 
hub genes were carried out by log‐rank tests and were 
plotted using Kaplan–Meier survival curves. Samples 
were divided into two groups (high-risk and low-risk) 
by GEPIA online database. After that, risk hazard ratio 
(HRs), relative confidence intervals (CIs), and p-values 
were generated.

3.8. Identification of Candidate Regulatory MiRNAs 
and Drugs
Using the miRWalk database (http://mirwalk.umm.uni-
heidelberg.de/search_genes/) the miRNA regulatory 

network was constructed for recognized hub genes. 
miRWalk stores predicted data obtained with a machine 
learning algorithm, including experimentally verified 
miRNA-target interactions. The focus lies on accuracy, 
simplicity, user-friendly design and most up-to-date 
information. In addition, the well-firmly established 
Drug-Gene Interaction Database (DGIDB) (http://www.
dgidb.org/) was utilized to predict functional and drug-
able hub-genes. Drugs in this database are used clinically, 
or they are presently used in clinical trials (15).

4. Results

4.1. Identification of DEGs
A total of 50 genes, including 4 up-regulated and 46 
down-regulated, were recognized as DEGs with a 
threshold of adjusted p-value 0.05 and were found to 
be identical in two approaches (limma and GEO2R) 
(Fig. 2). After that, these 50 DEGs were chosen for 
further analysis. Positive regulation of collagen fibril 

Figure 2. DEG analysis of GSE39791 using two different approach (limma package of R and GEO2R online software). The logFC 
of the gene expression is presented under the Venn diagram. A total of 50 genes were considered as DEG and were selected for hub-g.
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Gene symbol Log2FC (GEO2R) Log2FC (limma) Gene symbol Log2FC (GEO2R) Log2FC (limma) Gene symbol Log2FC (GEO2R) Log2FC (limma)

1 CYP1A2 0.712 -4.628 21 MT1H 0.370 -1.998 41 SERPINA11 0.279 -2.01

2 CYP3A4 0.603 -3.961 22 HSD17B13 0.369 -2.876 42 DCXR 0.277 -2.049

3 HAMP 0.554 -3.938 23 PCK1 0.362 -2.798 43 ASPG 0.276 -1.519

4 MT1F 0.540 -3.677 24 GBA3 0.359 -2.429 44 FTCD 0.275 -1.625

5 MT1G 0.532 -4.049 25 SHBG 0.353 -2.076 45 IGFBP3 0.265 -1.89

6 APOF 0.477 -3.182 26 SLC25A47 0.339 -1.991 46 MAT1A 0.253 -1.644

7 C9 0.476 -3.548 27 ASPDH 0.336 -1.827 47 COL4A1 -0.290 1.864

8 NAT2 0.473 -2.678 28 VIPR1 0.328 -1.776 48 TOP2A -0.298 1.48

9 MT1X 0.447 -3.169 29 F9 0.324 -2.305 49 CAP2 -0.307 1.764

10 LCAT      0.446 -2.574 30 CLEC1B 0.315 -1.589 50 CDC20 -0.312 1.578

11 ADH4 0.438 -3.452 31 EVC2 0.313 -1.764

12 MT1E 0.433 -3.276 32 DBH 0.306 -1.565

13 FCN3 0.427 -1.557 33 DNASE1L3 0.304 -1.766

14 MT1M 0.413 -2.286 34 MT2A 0.303 -2.663

15 ADH1B 0.401 -2.588 35 HBA2 0.301 -2.037

16 SLCO1B3 0.401 -2.135 36 KLKB1 0.292 -1.827

17 SLC22A1 0.398 -1.771 37 CLEC4G 0.289 -1.475

18 TTC36 0.396 -2.218 38 KBTBD11 0.286 -1.456

19 IGFALS 0.390 -2.216 39 PNPLA7 0.286 -1.589

20 MT1A 0.375 -2.997 40 SMIM24 0.285 -1.654

limma GEO2R

1635047
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organization, cellular response to amino acid stimulus, 
and the amino acid response was the most critical 
biological functions of the DEGs (Fig. 3).

4.2. Identification of WGCNA Modules
Quantile-normalization, probe ID conversion, and 
averaging were performed in the data preprocessing phase 
of the study. There were 4000 genes included in WGCNA 
as a result of the obvious broad range of expression 
values. By using sample clustering, we were able to 
identify 20 outliers among 144 samples. As a result, 124 
samples were included in the analysis (supplementary 
data 1). Afterward, β= 10 was chosen as soft-threshold 
power, and the weighted co-expression network of HCC 
patients and normal samples was reconstructed. Thus, the 
hierarchical clustering dendrogram found 10 modules, 
which are shown in different colored branches of the 
dendrogram. Each module’s number of genes varied 
from 49 (green-yellow) to 706 (turquoise) (Table 1). In 
addition, 738 genes were not allocated to any modules 
(designated as grey).

4.3. Identification of WGCNA Module and Enrichment 
Analysis
For each module, eigengenes were generated to assess the 
connection of the modules with the presence of illness in 
samples and module-module correlation. As previously 
stated, the blue module was strongly connected with 
HCC illness (r= 0.92, p-value=3.00E-44) (Fig. 4A and 
Table 1). The most important pathways connected to 
the blue module and DEGs were investigated using the 
ClueGO program. Extracellular exosome, extracellular 
space, positive regulation of cell proliferation and 
serine-type endopeptidase activity, were important 
biological functions of the blue module (Fig. 4B). 
We also used the KEGG pathways online website to 
examine the gene function of the blue module, as well 
as the desired hub genes with their co-expression genes 
in the signaling pathways. The enriched hub genes were 
mainly observed in chemical carcinogenesis, caffeine 
metabolism, cholesterol metabolism, drug metabolism, 
and glycerophospholipid metabolism (Fig. 4B).

Figure 3. Processes and pathways identified within the DEGs. Gene ontology and pathway analysis 
were performed using significant genes across all datasets. Node size corresponds to the number of 
associated genes, and node color reflects the statistical.

Sharifi H et al.
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Module color Correlation p-value #Genes
Module Preservation

GSE82177 GSE121248
Black -0.84 1.00E-28 156 6.9 15
Blue 0.92 3.00E-44 665 11 23

Brown 0.54 4.00E-09 449 3.1 23
Green -0.21 0.03 324 3.2 5.5

Greenyellow 0.5 5.00E-08 49 4.7 8.6
Grey -0.15 0.1 738 1.6 14

Magenta -0.73 1.00E-18 558 1.4 8.8
Pink -0.4 3.00E-05 156 8.2 13
Red -0.076 0.4 199 6.8 14

Turquoise 0.4 3.00E-05 706 1.1 2.4

Table 1. Module colors characteristics. 

Figure 4. Module-trait relationship and enrichment analysis of blue module. A) Module-trait 
relationship of GSE39791. Each row corresponds to a module eigengene and the column corresponds 
to HCC status. Numbers in each cell represent the corresponding. 
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4.4. Module Preservation Analysis
The result of module preservation showed that Zsummary 
scores were equal to 11 and 23 for GSE82177 and 
GSE121248 datasets, respectively (Table 1). These 
results suggest that the blue module, which was 
significantly associated with HCC had high preservation 
in both datasets.

4.5. Hub-Genes Detection and Enrichment Analysis
The association between the blue module’s 
properties (MM and GS) resulted in discovering 
hub-genes of interest that were strongly connected 
with HCC pathogenesis. The correlation between 
features (MM and GS) of the blue module led to 
detection hub-genes of interest that were highly 
associated with HCC pathogenesis. APOF, NAT2, 
LCAT, TTC36, IGFALS, ASPDH, and VIPR1 were 
among the hub-genes investigated (Fig. 5). The blue 
module’s co-expression network was reconstructed 
using GeneMANIA online database and visualized 
using Cytoscape software. 

4.6. Identification and Validation of Common-Hub 
Genes
A total of 7 hub genes with significant differential 
expression were found among normal and HCC samples 
in the blue module through validation by GEPIA online 
tool. Moreover, IHC results obtained from the HPA 
database showed variances in the expression levels of 
these hub genes (supplementary data 2-3). Survival 
analysis was performed to estimate the relationship 
between these 7 hub genes and the prognosis of the 
disease using the GEPIA database (supplementary 
data 4).

4.7.MicroRNAs as Upstream Regulators for Common 
Hub-Genes
Predicted hub-gene miRNAs were examined by the 
miRWalk database to discover any putative molecular 
processes. The experimentally validated miRNAs were 
shown in Figure 6. As a result, the VIPR1 hub gene is 
regulated by has-miR-1224-3p, has-miR-3940-3p, and 
has-miR-6749-3p miRNAs (Fig. 6). 

4.8. Drug-Target Network Construction
We searched for known HCC drug targets in the blue 
module to assess its drug development potential. In 
addition, we looked for drug targets that have not yet 
been approved for use in the treatment of HCC in the 
module we used. These targets in the module included: 
LCAT (Testosterone Propionate, Prednisolone, 
Streptozotocin, Testosterone), NAT2 (Thalidomide, 
Sulfamethazine, Paclitaxel, Aspirin, Docetaxel, 
Isosorbide Dinitrate, Cyclophosphamide, Alcohol, 
Isoniazid, Interferon Alfa-2a, Pyrazinamide) and VIPR1 
(Azithromycin, Azelaic Acid, Secretin, Bepridil) (Fig. 
6). The existence of targets in the module of interest 
revealed that these drugs may impact HCC and could 
be evaluated as suitable candidates for further study in 
this respect.

5. Discussion
Prognoses for HCC are still unknown despite recent 
advances in diagnostic and therapeutic techniques 
(16). The important public health aim nowadays is 
the development of biomarkers and targeted therapy 
approaches for the early detection and treatment 
of HCC, respectively, and finally, aid to reduce the 
mortality rate of the illness worldwide (17). To this 

Figure 5. Similarity assessment between DEGs and hub 
genes of the blue module using a Venn diagram. A total of 7 
hub genes which were similar in both list were chosen and 
then imported to GeneMANIA to construct a co-expression 
network. 
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end, we performed a WGCNA-based analysis to 
discover biomarkers related to HCC progression. The 
GSE39791 dataset was used for this study, which 
contained 72 HCC samples and 72 normal samples. An 
analysis of co-expression networks by WGCNA found 
a highly conserved blue module with 665 genes to be 
strongly linked to HCC. The top 13 experimentally 
validated hub genes of this module were APOF, NAT2, 
LCAT, TTC36, IGFALS, ASPDH, and VIPR1 (Fig. 5). 
The result of hub genes enrichment using g: Profi ler 
found that peroxisome organization and metabolic 
pathways were the two biological processes with the 
highest association to KEGG. Numerous studies have 
shown that peroxisomes play a signifi cant role in 
the development of cancer. Prostate cancer (18, 19), 
colorectal carcinomas (20), liver cancer, ovarian cancer, 

Figure 6. Co-expression network of selected hub-genes with related miRNAs and drugs. 
Experimentally validated miRNAs were downloaded from the miRWalk database for each gene. FDA 
approved drugs were acquired from DGIDB database for each gene. 

and bladder cancers (21), all express enzymes involved 
in peroxisomal lipid processing. Additionally, using in 
vivo mouse models, modulating the expression of the 
genes involved in peroxisome degradation (18) and/
or chemically inhibiting peroxisomal lipid processing 
(19), can diminish tumor growth in vivo mice models 
across a wide range of cancers (18, 19).
The NAT2 gene, for example, is highly expressed 
in the liver and has previously been associated with 
an increased risk of developing HCC. Both Gelatti 
et al. (22) and Yu et al. (23) identifi ed a signifi cant 
correlation between NAT2 genetic variants and HCC 
susceptibility among chronic HBV carriers who were 
smokers. Recently, Jiang et al. were conducted the fi rst 
systematic gene- and gene-set-based association study 
of HCC. Their analysis highlighted NAT2 and several 
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other potential genes significantly related to HCC 
risk. Our results also confirmed the significant role of 
NAT2 in HCC pathogenesis (supplementary data 2-3-
4), it could be a potential target for HCC treatment. 
In our study, drug repositioning analysis (Fig. 6) 
suggested some FDA-approved drugs like Aspirin for 
the treatment of HCC through regulation of the NAT2 
gene. The effect of Aspirin on cancer risk decrease has 
been examined in various research (24-26). In the case 
of HCC treatment, the findings of recent long-term 
cohort study indicate that daily aspirin therapy may be 
connected to a decreased risk of HCC progression in 
patients with chronic hepatitis B (27).
Based on Figures 5, supplementary 2-4, another 
significantly correlated hub gene was LCAT. The 
LCAT gene is an extracellular cholesterol esterifying 
enzyme in which cholesterol esterification is required 
for cholesterol transportation. Free cholesterol in 
the macrophage efflux due to ATP binding cassette 
transporter A1 (ABCA1) transporter and apolipoprotein 
A1 (APOA1) is esterified into an acyl chain via LCAT in 
the cholesterol esterification pathway. The cholesterol 
acceptors APOA1 drive cholesterol for bile secretion 
from the periphery to the liver (28). The LCAT gene 
defect may cause hypercholesterolemia, leading to 
accumulation of cholesterol in macrophages and other 
immune cells, promoting inflammatory responses, 
including Toll-like receptor (TLR) signaling, 
inflammatory activation, and bone marrow and spleen 
monocyte and neutrophil production (29). Also, the 
previous microarray-based research demonstrated 
that down-regulation of LCAT was related with HCC 
progression (30). Accordingly, the result of our study 
showed that the LCAT gene is not only a promising 
biomarker for prognosis but also could be a good target 
for HCC therapy. Regarding this, drug-target network 
interaction analysis showed 3 drugs that target the 
LCAT gene, including testosterone, streptozotocin, and 
prednisolone (Fig. 6).
Prednisolone as a glucocorticosteroid has many 
approved applications in the treatment of numerous 
kinds of cancer such as leukemia, lymphoma, and 
multiple myeloma as well as HCC (31). The next drug 
is testosterone which affects the gene expression of 
important HDL metabolism regulators such as Apo-I, 
hepatic lipase (HL), scavenger receptor B1 (SR-BI), and 
ABCA1 due to defects in the LCAT gene function and 
cholesterol esterification. Hence, testosterone, despite 

dropping HDL cholesterol, intensifies the transport of 
reverse cholesterol and may have good potential in 
HCC treatment (32).
MiRNAs regulate about 50 percent of mRNAs in 
mammalian cells (33). So, any changes in miRNAs 
expressions can lead to disruption of the cellular 
functions and cause disease. Numerous studies have 
shown that these non-coding RNAs play a crucial 
role in the development and development of tumors 
(34). miRNAs have been identified as either tumor 
suppressors or oncogenes and function as regulators 
in various oncogenic and tumor-suppressing pathways 
(35). In many malignancies, these RNAs are expressed 
differently in malignant samples compared to normal 
ones or at different stages (36). In the literature, it 
is clear that miRNAs have a strong association with 
cancer, which suggests that they could be used in 
the diagnosis and prognosis of cancer (37). Many 
researchers have also screened different miRNAs in 
the tissue, plasma, or sera of HCC patients (38). So, 
we constructed a bipartite miRNA-mRNA network 
which showed 3 experimentally validated miRNAs 
that regulated our co-expression network via the 
VIPR1 hub gene.

6. Conclusion
In summary, the findings of the WGCNA investigation 
on three datasets of HCC showed a substantially 
associated module containing 7 hub-genes, which can 
consider potential genes in HCC pathogenesis. Also, 
according to the drug-target network, we found 19 
potential drugs with FDA approval that can potentially 
use for HCC treatment through the regulation of three 
hub genes of the co-expression network. The three 
experimentally validated miRNAs also regulated 
our co-expression network via the VIPR1 hub gene, 
according to our findings. 
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